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I. INTRODUCTION

The success in using stochastic disturbance and measurement noise models
with underlying Markov process representations is well documented for signal
estimation and system identification [1]. Yet this does not preclude the
possibility that alternative, i.e., nonstochastic, models might be advan-
tageous in certain situations. This paper is concerned with one such potentially
useful approach in which the disturbances are modeled as arbitrary solutions
to a linear homogeneous differential equation of pre-selected order (r) over
a fixed finite time interval, 0 ¢ t ¢ tl s and "one shot" signal estimation
or system identification is to be undertaken based on the observed data on
[O,tl] . No assumptions are made regarding either the coefficients or the
initial conditions for this differential equation, so that a variety of dis-
turbances on [O,tl] can be represented by a moderately low order model,
e.g., r = 3 0or 4 , if the observation time interval is of rather limited
duration.

Although such disturbance models have been utilized in the past in connec-
tion with compensator design for the servomechanism problem, [2] and [3], or
more recently by Davison [4] for a "compensator identification" problem with
asymptotic tracking properties, the use of this model is quite different here.
In the first place, the time interval [O,tl] is finite and, at least theo-
retically, may be arbitrarily short. Secondly, no restrictions are placed
on the disturbance modes, i.e., they may be stable, unstable, or a mixture
of both. Finally, no attempt is made to identify the initial conditions,
eitter in the system model or in the disturbance model. This latter property

results from the application of an annihilating filter (introduced in [5]),

which zeroes the initial condition response of a linear system on a fixed time
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interval [O,tl] . Relative to the results in [5], the present paper extends
the class of models to include certain nonlinear and time-varying systems,
allows for models in which the parameters enter nonlinearly, and includes a
signal estimation problem as an application of the basic formulation. In
addition, the parameters for the disturbance model are represented explicitly
in this paper, rather than implicitly as in the case of [5].

The theoretical development of the approach is given in Section II
starting from a basic differential operator model. Two formulations are
presented depending on whether the model parameters are 'separable"” or not.

In each case the parameter estimation problem is transformed into a certain

kind of least squares fit with the pertinent functional obtained as an inner
product over a subspace of the function space to which the observed data

is assumed to belong. This subspace results from the use of the annihilating
filter and serves to obviate the need to estimate the unknown initial conditions.
It is then shown in Sections III and IV how particular identification pr-oblems
can be translated into the basic formulations developed in Section II.

Computational considerations are briefly discussed in Section V, but actual

numerical results are reported elsewhere.




! II. THEORETICAL DEVELOPMENT

It is shown in Sections III and IV how particular versions of the signal

estimation and system identification problems can be viewed as finding a

‘ parameter vector 6 = (el..ep) which satisfies a differential operator

| equation of the generic form |

P(D)v(t) - Q(D)g(t,8) =0 , O < t ¢ t, (1)

where P and Q are polynomial matrices in the differential operator

d
D = -y i
given by :
.ot T on-i |
P(D) = | P.D » QD) =] ;D
i=o i=o

and (v(t),g(t,e)] are column vector functions of the given data on [o,tll

and parameter vector 6 as indicated. With respect to smoothness, v(t) and

g(t,8) are assumed to be piecewise continuous functions of t on [O,tl] and

E are presumed not to depend on derivatives of the data; g(t,8) is assumed to

be continuously differentiable with respect to 8 for each fixed ¢t .

Definition The basic model (1) is said to be separable in the parameters

i if g(t,8) admits to the representation
g | g(t,0) = V(t)£(8) (2)

where V(t) 1is a matrix valued function of the data and f(-) is a continu-

ously differentiable vector valued function of the parameters with the single

e e e

% valued property: :

* *
f(8) = £(6 ) if and only if 6 = ¢ (3)

%
for all 6 and 6 .

YT
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It will be shown that the computational burden is significantly less for

separable models, and that the range of f(.) is generally of higher dimen-

e ——

sion than its domain.

Although system identification will be discussed more fully in Section 1V,
the following simple example will illustrate the above notation before con-

tinuing with the development.

Example 1 Consider the identification of parameters in the Mathieu equation

with disturbance input d(t) :

9(t) + [al - a, cos a3t]y(t) = Blu(t) +d(t)] , 0 tst, (M)

1

based on the observed input-output pair [u(t),y(t)] on the observation inter-

val (O,tl] . Assume the disturbance model

d(t) + wd(t) = (D+ w)d(t) =0 , 0 tgt (5)

24
where w® is a parameter which is to be identified along with the other system
parameters. The disturbance d(t) can be eliminated from (4) by operating

on both sides with (D + w) . After rearranging terms the resulting differ-

4 ential equation can be expressed as

[ wy(t) i

"
o

p%(t) + [0 D 1] |[o,-a,cosa tly(t) - Bult) (6)

wf[ul-azcosaat]y(t) - Bu(t)}

T - >
| which is of the form (1) with P(D) = D> , Q(D) = -Row(DZ,D,1) and

6 = (al, Gy Gy, B, w) .
} The model (6) is nonseparable in the parameters; however, it reduces to

é the separable case if the parameter ay is a known constant since the g(t,8)

vector can then be written as follows:




wy(t)

(a,-a,cosastly(t) - Bu(t) |= V(£)£(9)

u{(al—a2cosa3t]y(t) - Bu(t)}

ik
E
- al
y(t) o 0 0 0 0 0 a,
= |0 y(t) —y(t)cosuat -u(t) o 0 0 8 (7)
E 0 0 0 0 y(t) -y(t)cosa3t -u(t) wa,
3 m2
wB

where V(t) depends on the given input-output data, the parameter vector is
now 8 = (ul, Gy B,w) and £(8) satisfies the single-valued condition (3).
Given the polynomial matrix pair [P(D),Q(D)] in the basic model (1), let

a square polynomial matrix F(D) be selected in the form
H m-i
F(D) =.X F,D s M 32N (8)
=0

with the integer m and coefficient matrices Fi chosen so that F-l(D) H
exists and P-I(D)[P(D),Q(D)] is a causal, i.e., proper, transfer function 3

matrix. Then define an auxiliary error function z(t) = z(t,8) implicitly

SRR A e M

through the solution to the differential operator equation

F(D)z(t) = P(D)v(t) - Q(D)g(t,8) , O t<t (9)

1 .




B

If (A,C) is an observable matrix pair for the homogeneous part of (9)*,

then the solution for any particular initial condition x, can be written as

A

2(,0) = Ce"'x_+ h(t) - u(t,8) , Ogtet (10)
where h(t) and u(t,0) are the zero state solutions to
|
F(D)h(t) = P(D)v(t) (11-a)
and
i F(D)u(t,0) = Q(D)g(t,6) (11-b) :
E respectively. In the case where the basic model (1) is separable in the
L parameters, the vector u(t,8) can be written as
1
n(t,0) = M(t)f(9) (12)

where M(t) 1is the zero state solution to the matrix differential equation

F(D)M(t) = Q(D)V(t) . (13)

Given the polynomial matrix F(D) and a corresponding observable matrix pair

(A,C) for the homogeneous part of the auxiliary error equation (9), the anni-

hilation filter relative to a fixed observation time interval [O,tl] is
defined by the (noncausal) kernel function matrix

- ]
eAtH leA T

& . H(t,t) = I§(t-1) - C (ol (14-a)

Ostet, + OETEL

1 1

where 6(t) is the Dirac delta function, I is the identity matrix, wt is

+ i3 s
That is, all solutions to F(D)z(t) = 0 can be expressed by

z(t) = Cx(t) = CeAtxo 4 x(t) = Ax(t), x(o) = xocé?n, for an appropriate observable

matrix pair (A,C) with minimal dimension state space (n) , and where eAt is

the state transition matrix for A.




=9
inverse of the observability Gramian for the pair (A,C) defined by

S
. f 1AMty o
(+]

and prime denotes transpose. If ? denotes the Hilbert space of all vector
valued square integrable functions z(t) which are possible solutions to (9)
on [O.tl] , and 2° the linear subspace spanned by the columns of CeAt ,+

then it is easy to show that ¢ is a projection operator on 2 with range

contained in (3—;0) which possesses the annihilation property

d'(CeAtxo) =0y 0 tst. | forall xoch . (15)

1

This property follows immediately from the definition of & in (14). The

fact that & 1is a projection follows upon noting that (%) = & .

Operating on both sides of (10) with & yields

2(t,0) = h(t) - u(t,8) , 0 <t <t (16)
where
31
~ i (]
h(t) = h(t) - CeAtH lJeA TC'h(r)de (17-a)
o
and
b |
S -5 '
u(t,0) = u(t,0) - ce®wlleA T ru(r,0)dr (17-b)
(o]

;F'I'—hus, 30 = {z(t) = Ce"’tx<> yO€t et ¢ xocg‘pn}




g

are the projections of h(*) and u(+,0) down into the subspace (;b ;L).
Defining the inner product functional Jl(e) by

T
~ ~ l~ -
Jl(e) = <z(8), z(8) > = J z'(t,0)z(t,6)dt (18)
o

it follows from the above development that any value of 6 which satisfies the
basic differential operator model (1) is also a solution to the nonlinear trans-

cendental equation
Jl(e) =08 . (19)

Conversely, any value of 6 which satisfies (19) is a candidate for a value of
the parameter vector 6 satisfying (1).
A straightforward calculation of the quantities involved*shows that Jl(e)

can be represented by

t t

) ! 1
Jl(e) = I h'(t)h(t)dt - n'w'ln - 2[ h'(t)u(t,0)dt
o o
it (20)
+ 2n'H'lv(e) + J p'(t,8)u(t,8)dt - v'(8) w'J‘V(e)
0

where h(t) and u(t,8) are given by (11) and the vectors (n,v(8) ) are :

{ defined by
€

:
n = J eA tC'h(t)dt (21-a)
]

1 )
-.J v(8) =I P tou(e,00at . (21-b)
f 0

: Specifically, substituting (16) and (17) into (18), and simplifying the resulting
expression.

e o

RS et

-
s : - J
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An iterative solution to (19) can then be attempted via any suitable parameter
search method, with the gradient val(e) and any higher order derivatives of
Jl(G) computable by causal relations involving the input-output data on [O,tl],
relative to any particular value of 8 . Equation (11-b) must be integrated
anew (from the zero state) for each value of 6 in the course of constructing
a sequence {6(n)} as a possible solution to (13). More generally, the linit
of a minimizing sequence for Jl(e) represents a kind of least squares
estimate of the parameter vector 8 which may, or may not, be unique depending
on the nature of the model (1) and the observed data on [O,tl] :

In the case of a model which is separable in the parameters, u(t,8) is

given by (12) and v(8) in (21-b) can be written as

v(8) = Nf(0) (22)

where the matrix N is defined by
t

i
N = J eA'tC'M(t)dt D 123)
(o]

In this case, the function Jl(e) reduces to the following explicitly defined

function of 6 :
Jz(e) = a - 20'F(0) + Fr(68)0f(H) (2u4)

where (a,;,%) are defined by
t

1 =1
a = J h'(t)h(t)dt - n'W "n (25~-a)
(o]
t
. -1
G = I M'(t)h(t)dt -~ N'W (25-b)
(o]
t
! = SR
¢ = J M'(£)M(t)dt - N'W "N . (25-c)
(o]

+Ihe matrix ¢ is actually the Gram matrix for the column vector functions of
M(t) = & (M) ; as such, ¢ is necessarily symmetric and non-negative definite
rega~dless of the data on [O,tl] .
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Although Jl(e) and Jz(e) are equivalent positive definite functionals
of 6 whose zero values reflect possible values for the unknown parameter
vector @ satisfying the basic model (1), the computational advantages of
(24) for the separable-in-the-parameters case should be evident inasmuch as
J2(8) is an explicitly defined function of 6 , while Jl(B) is defined only
implicitly. This means that once the differential equations (1ll-a) and (13)
are integrated (from the zero state) and the quantities (n,N,a,[,$)} computed
from (21-a), (23) and (25), there are no further integracions needed involving
the data collected on [O,tl] . Moreover, sufficient conditions for the
uniqueness of solutions to the parameter estimation problem can be stated more
specifically as follows.
Assertion In the case of the basic model (1) and (2) which is separable in
the parameters, a minimizing value e* for the positive definite function
J2(9) in (2u) is a least squares estimate of the parameter vector 6 which is
unique if (as a sufficient condition) the given data is such that the columns
of Q(D)V(t) are linearly independent functions on 0 € t ¢ t

The fact that a minimizing value 6* for J2(6) is a least squares esti-
mate follows from the consideration that if J2(A) s A = £(8) is minimized

over ) , rather than 6 , the necessary condition, VJQ(A) = 0 , is seen to be

i ) &
FV,00) =g - e =0

which in turn can be seen to be the normal equations for the projected auxiliary
error function z(t,8) = h(t) - M(t)£(8) = h(t) - M(t)K in (16). Since
t ~! ~ ~
¢ = I 1% (t)M(t)dt is the Gram matrix for the column vector functions of M(*),
o

a unique solution to these normal equations is obtained if and only if the

columns of M(+) are linearly independent on [O’tl] . Now the columns of M(t)




g

=11-

are wholly contained in the subspace (g}- ;%) and can be represented by
(F°1(D)Q(D)V(t)k)l where the symbol ( ) denotes the orthogonal complement,
or projection, of the function F'l(D)Q(D)V(t)X in the subspace (;z- ;L) .
Since 2;0 is the null space for F(D) , it follows that linear dependence, or
independence, of the columns of i(-) cannot be destroyed, or altered, by
operating on (F-l(D)Q(D)V(t)A)L with F(D) . By this argument, the sufficiency
proof for uniqueness in the Assertion is established. This condition is also
necessary when the function f£(8) is just 6 since J2(6) is then a positive
definite quadratic form in 6 . This will be the case for the signal estima-
tion problem in Section III, as well as any problem for which the unknown param-

eters enter linearly in the basic model (1) - (2).

At ke S e i




VR .

e S5 =

=12~

III. Signal Estimation

Let an observed scalar signal y(t) on [O,tll be represented by
y(t) = s(t) + d(t) (26)

where the useful signal s(t) and the disturbance d(t) are assumed to be

modeled by the differential operator equations

s(t): A(D)s(t) = B(D)u(t) (27-a)
r s
d(t): T(D,6)d(t) = J 6,D" "d(t) = 0. (27-b)
i=o
8, = 1

In the model (27-a) for the signal s(t) which is to be estimated, the differ-
ential operator polynominals (A(D),B(D)) and the deterministic signal u(t),
0<stcg t), are assumed to be given, but the initial conditions are unknown. The
order (r) of the disturbance model (27-b) is assumed to be specified, but the co-
efficients 6 = (81--er) and initial conditions are unknown.

Operating on both sides of (26) with T(D,8)A(D), noting (27), and rearrang-

ing terms leads to the differential operator equation

o |

0 = D'[B(D)u(t) - A(D)y(t)] - [Dr-l---D 11[A(D)y(t) - B(D)u(t)]|- | (28)

6
'

which is of the form (1) and (2), i.e., separable in the parameters, with the
parameter vector 6 = Col(el---er) entering linearly. A least squares estimate
of 8 is obtained either by minimizing the quadratic functional J2(°) with

f(8) = @ in (24), or by solving the "normal" equations




(29)

directly, where ¢ and ¢ are given in (25) after first integrating the differ-
ential equations (1l-a) and (13) for this problem, i.e., obtaining the zero

state solutions to

D'B(D)u(t) - D'A(D)y(t) (30-a)

F(D)h(t)

and
F(D)M(t)

(0" teeeD 130ADIV(L) - BOD)ul(t)]. (30-1)

Here h(t) is a scalar while M(t) is a row vector (Ml(t)--Mr(t)).

Let 6 denote the resulting least squares éstimate and define an annihi-

lation filteriﬁb by its impulse response function He(t,T) analogous to (14):

Aet -1 Aér
= - - ]
He(t,r) §(t-1) Cee We'e " Co» Ottt (31)

where (Ae,Ce) is an observable pair for the disturbance model (27-b) with

6 =60, e.g.

C9 = Row(1,0+¢0). (32)

>
"
DHI>O o ¢ O
o
°
.
.
Y e ¢ O
-

The signal estimate is then defined by

£t

A
+

s(t) = (y(t)) 0

(233)
" 8
= y(t)—cee e Cey(f)dt

which is the projection of the observed data y(t) down into the subspace ob-

/ -
tained by deleting all linear combinations of the disturbance modes identified




—

e

via the solution to the normal equations (29). Using the function space norm,
the error in this estimate can be found to have the following representation:

- 2 i
|ls - 8]]° = déHado

where

e o Cés(t)dt.

It is clear that the estimate s(t) is precisely the signal s(t) under the
conditions: (i) the models in (27) are correct, (ii) det ¢ ¥ 0, and (iii) s(+) is
orthogonal to each of the basis functions comprising d(+), i.e. d° = 0.

Example 2: Fourier Series Model for s(t) 3

Given the time interval [O,tl], define a fundamental frequency W by

and select the polynomials (A(D),B(D)) in (27-a) according to

D(D2+02 ) (024402 )+ + (D2 4mZu>)
(o] (o} o

A(D)

B(D) = O.

Then the solution to the signal model (27-a) is the truncated Fourier series

m jnuot
s(t)= ] se » 0EteEt,,

n=-m
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IV. System Identification

A number of examples will be given in this section to illustrate the
basic theory for system parameter identification.
Example 3: Linear Differential Systems

Let the input-output relation for a class of linear systems be charac-
terized in the absence of input or measurement disturbances by the differen-

tial operator equation

A(D,w)y(t) = B(D,w)u(t) (3u)

n .
I B (D",

n
where A(D,w) = ] Ai(w)D“‘i , B(D,w) =
i= o

i=o i
The coefficient matrices (Ai(w),Bi(w)),o € i ¢ n, are assumed to be given func-
tions of a parameter vector w = (wl~-mp). Define a vector valued function f(w)
with components fi(m) selected so as to reflect all the various distinct ways
in which the parameters enter into the Ai(m) and Bi(w), i.e. linear, multipli-
catively, etc. It is then easy to see how to define quantities {P(D),0(D),
v(t),V(t)} with v(t) and V(t) depending on the input-output pair [u(t),y(t)]

such that the following decomposition holds:

P(D)v(t) - Q(D)V(t)f(w) (35)
= 0.

A(D,w)y(t) - B(D,w)u(t)

Now suppose the input and output are corrupted by additive disturbances such

that the observed output y(t) includes a measurement disturbance d,(t) accord-

ing to
y(t) = yo(t) + dl(t)

and the actual input to the system is the signal

uo(t) = u(t) + dQ(t)

e i e T e Y ———
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while only u(t) can be directly observed. Including these disturbances in (3u4)

implies:
A(D,w)ly(t) - dl(t)] = B(D,w)(u(t) + dz(t)]. (36)

If dl(t) and dz(t) are assumed to be arbitrary solutions to differential equa-
tions of the form (27-b) on the observation interval [O,tll, it makes no
difference whether all such disturbance modes are present in the input, that
they corrupt only the output, or some combination thereof, since operating on

both sides of (36) with T(D,8) yields
T(D,8)A(D,w)y(t) = T(D,6)B(D,wlu(t). (37)

With the decomposition (35) already defined for the system without disturbances,

the analogous decomposition for the model (37) with disturbances modeled by

(27-b) can be easily shown to be as follows: [ 91 1
0 = D'P(D)v(t) y
r
[0 2R(D)v(t)+ «P(DIV(H) ! DTQ(DIV(E) DT " Ta(D)V(H) - cQ(DIV(RII{£Cw) | (38)
elf(w)
f;f(m{

This differential operator equation is in the form of the separable-in-

the-parameters model (1) and (2) with parameter vector 6 = (el-oer,w1

The vector function £(8) on the right side of (38) satisfies the single-valued

'-wp).

property (3) if the original function f(w) in (35) satisfies this property.
This will normally be the case for a properly parametrized model.

It is apparent from (37) that the disturbances can be equivalently inter-
preted as uncontrollable modes. In contrast with the formulation in [5], the

parameters (81--6r) for these modes are modeled explicitly here, rather than
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implicitly. This avoids the polynomial factorization discussed in [5] when

the disturbances are modeled implicitly.

As specific illustration of this notation consider the following state

equations for a helicopter in longitudinal motion as given by Narendra and

Tripathi [6]: 2 = — I
b
a)) 2, 33 3, by Pyo

%21 % " m @ Neh
x(t) + u(t)

1 @ e - @ by P
e R Y o o0

— -

e
| o
R S S

y(t) = x(t) .
. 8 5 &

According to Narendra and Tripathi the (b21’332’33u) entries (designated by
(ml,wz,wa) above) vary significantly over the airspeed range 60-170 knots,
while the remaining entries maintain relatively constant values. In addition,
the vertical velocity (x2) is difficult to measure, and the pitch rate (xa)
might entail high frequency measurement noise. Hence, horizontal velocity (xl)
and the pitch angle (xu) are regarded here as the measurable outputs, together
with the measurable collective (ul) ahd longitudinal cyclic (u2) pitch control
input variables, and w = (b21’332’asu) is regarded as the parameter vector for
identification. Eliminating the states (xz,xa) in order to obtain an input-
output relation of the form (34), and rearranging this equation into the requi-

site form (35), the quantities (P,0,v,V,f) are found to be as follows:

3 9 010 0]
P(D) = POD + PID + P2D + P3 = P°=
000 0
e 1
D1O ~y(t) &
Q(D) = v(t) = flw) = 2
001 u(t) Wy
12
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0 -323y2(t) -yz(t) 0

v(t) = 0 ya(t) a22y2(t) -ul(t
12ul(t) 0 : 0 0

—d

A
ya(t) = -azlyl(t) - ‘2uy2(t) - b22u2(t)

The (Pl,P P3) matrices depend on the fixed (aii’bij) values.

2'
Example 4: Time Lag Systems
Let the model (34) in Example 3 be modified to include an unknown pure

time delay a:

A(D,w)y(t) = B(D,w)u(t-a), a < T (39)

It is clear that a decomposition such as (35) will not exist in this instance
so that the time-delay system is not separable in the delay parameter. How-
ever, input-output disturbances similar to those included in (36) can still
be incorporated leading to (37) with u(t) replaced by u(t-a). The basic model
(1) will then apply in this case for appropriately defined quantities {P,0,v,g}
with the parameter vector 6 comprised of (6,w,a).

As a specific illustration of the notation involved, consider a single

input-single output system with

A(D,w) = D2+w D+tw, , B(D,w) = w

MR 3

T(D,0) = D46 .
The input-output relation (39) with disturbances is then

(024 D4, )y (£)-d; ()] = wylult-a)+d,(t-a)].

1
Using a first order disturbance model for both dl(t) and d?(t), the above is
equivalent to the following differential delay operator equation (obtained

after some rearrangement):

+A1though a is unknown, its value is assumed to be bounded by a given number
8 ax 25 indicated.
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(w,+8)y (1)
p3y(e) + 0% b 1] (w,+u,0)y(t) - wu(t-a)| = 0 (40)
mzey(t) - uaeu(t—a)

which is of the form (1) with parameter vector 8 = (e,ml,w2,m3,n).

Even though the "state' of the models (39) and (40) is infinite dimen-
sional, the basic theory of Section II leading to the functional Jl(e) in (20)
is still valid. However, the given data must be assumed to include the past
input u(t) for te[-umax,ol in dddition to the input-output pair [u(t),y(t)] on
fo,tl]. This will ensure the existence of a solution to (19) for computational
considerations.

Example 5: Hammerstein Model

Consider the scalar system with observed input-output pair [u(t),y(t)]

on [o,tl]:

k
A(,)y(t) + d ()] = B, ] a,CueN! + a,(0)] (v1)
i=1

where dl(t) and d2(t) are unknown disturbances. This is a Hammerstein model
[7] with output disturbance dl(t) and intermediate input disturbance dz(t)
entering the system after the zero memory nonlinearity characterized by the

parameters a = (“1'°°k)' Assuming the disturbance model (27-b) for dl(t) and

d2(t), the model (41) is modified to
k '
T(D,8)A(D,w)y(t) = T(D,8)B(D,w) | a, (u(t)). (42)
i=1
It is evident that with appropriate definitions of the quantities (P,Q,v,V,f),
(42) can be arranged in the form of the separable-in-parameters model (1)

and (2) with parameter vector 6 = (6,w,a), given any particular (A(D,w),B(D,w))

polynomials and integer r in (27-b).

i T ————————

ki
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Example 6: Peak Output System

Consider a scalar system characterized by the model
A(D,w)[c(t)+d1(t)] = B(D,u)[U(t)+d2(t)] (43-a)

-'-

y(t) = @ - (e(t))? (43-1)

where dl(t) and d2(t) are again disturbances of the type modeled in (27-b), c(t)
is an intermediate output signal preceding a parabolic nonlinearity with unknown
peak value a, and [u(t),y(t)] is the observed input-output pair cn [O,tl]. Incor-
porating the disturbance model (27-%) into (43-a) and replacing c(t) by
+la-y(£)1Y/2:

1/2

+7(D,8)A(D,w)[a-y(t)) = T(D,8)B(D,w)ult). (44)

Given polynomials (A(D,w),B(D,w)) and an integer r for the disturbance model
(27-b), it is clear that (44) can be arranged into the form of the nonseparable
basic model (1) with parameter vector 6 = (6,w,a). For example, taking the
second order system with first order disturbances:

A(D,w) = D2+w D+m2, B(D,w) = Was T(D,0) = D+6, the rearrangement of (44) in this

1

case laads to

P 3
t[a—y(t)]l/2
0=r0% 0% D 1] t(6+u1)[a-y(t)]1/2 (45)
i(0w1+w2)[u-y(t)]1/? - wyu(t)
L + 9m2[u-y(t)]1/2 - emau(t)

Here, the term P(D)v(t) in (1) is absent so that the inner product terms in-

volving h(t) and n in (20) are zero, leaving

fNotice that a shift in the parabola according to y = u-(c-c*)? is unnecessary
since the disturbance model for dl(t) includes c* as a special case.

R g W, SN IR et




L ruce,0)3%at - vie)wtu(e) = o (46)

172 in (uy)

where 6 = (e,ul,w2,w3,a). The ambiguity in sign for the term *(a-y)
and (45) cannot be resolved and may cause nonuniqueness in finding the zeros of
(46) even if the input is sufficiently active to excite all the modes in the
system on [O,tl]. In any case, the initial guess for the peak output should

be chosen to satisfy

a(l) > Max y(t)

<
ost‘tl

in the construction of any sequence {6(n)}, n = 1,2++, directed at solving (46).
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V. Computational Considerations

Assuming the basic model (1) has heen obtained for any particular appli-
cation, it is necessary to choose the polynomial matrix F(D) in (8) of suffi-
ciently high order so that (ll-a) and (11-b), or (13), can be integrated
without involving derivatives of the data on the right hand side of thesec
equations. Apart from det F(D) # O, the selection of F(D) is quite unrestricted
and the modes of F(D) can be selected as either stable or unstable since all
computations are confined to the finite interval [0, tl]' In this selection it
is possible to take advantage of cancelling various modes in P(D) and Q(D),
i.e. cancellation of poles and zeros in F-l(D)[P(D), Q(D)], in order to simplify
the computations for h(t), u(t,8) or M(t). However, it is necessary to include
any such cancelled modes in the computation of CeAt for the determination of W
in (14b) and in the computation of (n,v(8) or N} in (21) and (23). In this
connection it should be evident that CeAt and W-l can be computed offline and
stored for subsequent online computations as input-output data is presented.

Various simplifications in integrating the reaquired differential equations
can be gleened by a careful comparison of the equations involved. For example,
comparing (30a) and (30b) which are needed to obtain the normal equations (29)
in the signal estimation problem, it is evident that the components of M(t) can

be obtained by pure integrations of h(t), viz.

t t
M (1) = - Jo h(x)dr , M (t) = £ M, (1T, 0 <t et (u7)

i:?cot’
Similar simplifications in computing the columns of M(t) will be evident for

the integrations arising from the basic model (38) in Example 3, as well as in

the other examples.
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Concerning the choice in the order (r) of the disturbance model (27-b),
it could be argued that such a checice can never be made with any degree of
certainty since disturbances are, by nature, unknown. Two commernts are ap-
propriate in this connection: (i) The minimization of either Jl(G) in (20),
or J2(6) in (24), represents a kind of generalized least squares estimate of
the parameter vector € appearing in the basic model (1) or (1)-(2), since
(20) and (24) stem from the Hilbert space norm of the projected error func-
tion z(t,8) in (16). (ii) If the minimal value of Jl(e) or J2(9) exceeds a
certain small value € indicating inadequacy of the model, a natural course of
action is to change the value of r and recompute the new functional. If
J(6;r) denotes the functional corresponding to a certain value of r in (27-b),
a reasonable procedure to follow might be to start with a large value of r,
say oo compute the necessary quantities for r = L then note that the
analogous quantities for r < B e be obtained by pure integrations of the
former in many cases. To illustrate this point, consider the quantities h(t) =
h(t;r) and M(t) = M(t;r) in (30-a) and (30-b) for the signal estimation problem.
Assuming F(D) is chosen so that h(t;rmax) and M(t;rmax) are causally related
to the given data, and assuming the same F(D) for r < A it is seen that

heir) = D° Tmax h(tse )

which is an (rmax_ r) fold integral of h(t;rmax). This consideration coupled
with the observations in (47) can significantly reduce the number of integra-
tions when considering various orders for the disturbances model (27-b).

As a final remark concerning the minimization of J?(O) in (24) for models
which are separable in the parameters, a choice basically exists betwecn mini-

mizing J, over A = f(0), or minimizing directly over 0, in view of the single

2
valued property (3). The advantage of the former is that J2 is quadratic in
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: A while it is generally highly nonlinear in 6. However, this advantage is
offset by the fact that the dimension of A may be very much greater than 6

as can be seen from the various separable examples presented in the preced-

ing sections.
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VI. Concluding Remarks

The formulations of the signal estimation and system identification
problems presented in this paper use models for the disturbances which are
deterministic homogeneous linear differential equations of preselected or-
der (r) on a finite time interval [O,tl]. The shorter the time interval, the
more realistic will be the assumption that the disturhbances can be so modeled.
On the other hand, the time interval must be long enough so that the data con-
tains enough information to reflect the values of the parameters to be deter-
mined in the basic model. This can be put into somewhat more specific terms
by referring to particular examples, viz. the matrix ¢ in the normal equa-
tions (29) for the signal estimation problem must be sufficiently positive
definite to yield a unique solution. A larger t enhances this possibility
since ¢ is a Gram matrix for functions in the space (E;- ?;e ¥

The examples for illustrating the basic model (1) are surely not exhaus-
tive. The Fourier series model in Example 2 is a natural model for the signal
estimation problem; vet there may exist applications for using the more general
model of (27-a). The nonlinear examples for system identification referred to
tandem interconnections of zero memory nonlinearities and linear dynamic sub-
svstems. However, other identification problems can be handled such as the
Duffing equation with input disturbance d(t):

FOO + wy(0F(8) + wy(t) + wy (6) = w,lult) + aA6)].

In differential operator notation, this can be written as

Dy (t) + 1/2 wlD(y2(t)) +uy(t) + m3y3(t> = w, lu()#a(1))

having noted that yy = l/ZD(vz). Employing the disturbance model (27-b) and

proceeding as in the previously cited examples will lead to a model which is

separable in the parameters.

The Van der Pol equation can be similarly handled.

N
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Finally, although most of these examples have involved time invariant systems,
it should be clear from Example 1 that certain time varying systems can he
placed in the form of (1).

No examples involving numerical calculations have been given in this
paper. However, a number of computer simulations have bLeen carried out for
linear system identification, both fixed and time varying. Some of these are
reported in Section V of [5], while others are contained in a recent thesis by
Chin [8]. The results of the latter, which includes an aerospace adaptive con-

trol application with time varying parameters, will be reported elsewhere.
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